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One of the puzzles in neuroeconomics is the inconsistent

pattern of brain response seen in the striatum during evaluation

of losses. In some studies striatal responses appear to

represent loss as a negative reward (BOLD deactivation), while

in others as positive punishment (BOLD activation). We argue

that these discrepancies can be explained by the existence of

two fundamentally different types of loss: excitatory losses

signaling the presence of substantive punishment, and

inhibitory losses signaling cessation or omission of reward. We

then map different theories of motivational opponency to loss

related decision-making, and highlighting five distinct

underlying computational processes. We suggest that this

excitatory–inhibitory model of loss provides a neurobiological

framework for understanding reference dependence in

behavioral economics.
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Introduction
Over the past decade a set of divergent observations have

emerged in human neuroimaging studies of monetary

loss. In studies of the receipt (or prospect) of financial

loss, neuroimaging responses sometimes exhibit deacti-

vation in BOLD signal of striatal brain areas associated

with motivation and decision-making (caudate, putamen,

and nucleus accumbens) [1�,2,3,4�], or little change at all
Please cite this article in press as: Seymour B, et al.: When is a loss a loss? Excitatory and inhibitory p
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[5]. This has often been seen as consistent with a primary

role of these regions in reward-related processing, and

these negative responses are usually seen in the same

regions showing activation to monetary gains. With

emerging evidence that striatal BOLD responses to

reward were well described by prediction error activity

in the context of passive prediction tasks (Pavlovian

learning), it was generally assumed that this activity

represented a single reward-specific and putatively dopa-

mine-related signal [6�,7].

However, this theory suffered when other studies involv-

ing loss, and especially involving primary punishments

such as pain, revealed positive activation in the striatum,

in very similar regions to those that showed deactivations
to financial loss [8,9]. Furthermore, the pattern of activity

resembled a prediction error, just like a reward prediction

with the opposite sign. This suggested that either the

striatum was encoding a more complex signal than origi-

nally thought — perhaps some sort of selective salience

signal [10], or that there was a second system for encoding

aversive outcomes that comes online with physical, but

less so financial, punishment. Why financial loss might

less reliably activate this system was unclear, but one

could posit it might be related to the fact that physical

punishments are primary outcomes ‘consumed’ immedi-

ately, whereas money is a secondary outcome whose real

outcome is fulfilled at a later date. A more reliable way to

‘activate’ the striatum to loss was introduced with a clever

design from Delgado and colleagues: they had subjects

begin the experiment with a task in which subjects could

earn a decent sized money pot. Then in a second, seem-

ingly unrelated experiment, they underwent a loss-con-

ditioning study, which revealed positive activation to

monetary loss [11�]. This result, together with a more

recent one [12], suggest that losing money that had been

earned on a previous task in some way rendered it

sufficient to reliably activate positive aversive coding.

This raises the question as to what makes a loss look

sometimes primarily like a negative reward, and at other

times like a positive punishment. This is important,

because if there are substantially different ways of repre-

senting losses in the brain, then the associated loss

behavior may have very different characteristics.

To make matters more complex, subsequent studies in-

volving the capacity to make active choices over monetary

loss or pain, that is, reducing or avoiding punishment, did
rocesses in loss-related decision-making, Curr Opin Behav Sci (2015), http://dx.doi.org/10.1016/
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Win signal
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Win $
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Excitatory and inhibitory processes underlying reward and

punishment. Excitatory values occur with the receipt, or prediction of

receipt, of a primary reward or punishment. Inhibitory values occur

with either the omission of an expected outcome (e.g. requiring, of

course, an expectation to be generated by some process, such as

Pavlovian Conditioning), or with the termination of a tonic or

repetitively received outcome.

C

ot fit either pattern simply. Here, for both money and
ain, striatal activity shows positive activation for avoid-

nce actions and avoided outcomes [13,14]. Rather than

presenting the magnitude of the expected punishment

n probabilistic avoidance), it seemed to represent the

lative positive value of avoidance [15]. That is, activity

gain looks like a reward signal — this time for actions,

ith no consistent evidence of an aversive striatal system in

peration, even for painful outcomes. A positive aversive

gnal is sometimes seen elsewhere, such as the anterior

sula cortex [16], but its contribution to decision making

as less clear.

xcitatory and inhibitory loss
nimal learning theory provides a structured approach to

nderstanding the relationship between gains and losses,

nd there is good evidence of the existence of two

parate motivational pathways for outcome prediction:

ne governing rewards, and the other governing punish-

ents [17]. In particular, accounts of interaction between

e two systems yield two distinct types of punishment:

xcitatory, and inhibitory, depending on the context that

efines the nature of punishment. Accordingly, inhibitory

alues emerge from two different instances for appetitive-

versive opponency: omission (Konorskian [18]) oppo-

ency, and offset (Solomon–Corbit [19]) opponency

igure 1).

mission opponency describes the frustrative loss that

ccurs when an expected reward does not occur. Here,

xcitatory losses are due to the positive presence of a

unishment, and inhibitory losses due to absence of an

xpected gain. A slightly different type of frustrative loss

ccurs when a tonically presented reward terminates. In

is case, Solomon and Corbitt proposed the accrual of a

ow adaptive process from which acute changes were

ompared. Both processes illustrate the clear distinction

etween excitatory and inhibitory losses, with the inhibi-

ry type being generated either comparison of neutral

utcome with an expectation of or tonic baseline level of

ward. This is exactly mirrored in the opposite valence:

hibitory reward being evoked with the relief at the

rmination or omission of punishment [20].

he existence of different types of loss offers an expla-

ation into the pattern of brain responses seen above. In

ost experiments, for ethical and practical reasons, loss is

perationalized by a reduction in the participant mone-

ry compensation (future expected reward). This proce-

ure would augment the inhibitory loss representation

nd therefore tend toward a deactivation in striatal areas.

owever, for primary punishments and financial out-

omes that were already considered ‘owned’, we would

xpect a dominant excitatory loss representation, and

ctivation of an aversive system observable in the stria-

m. In many situations, it may be that excitatory and
Please cite this article in press as: Seymour B, et al.: When is a loss a loss? Excitatory and inhibitory 
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inhibitory processes co-occur [21], and hence partially or

fully cancel out the subsequent fMRI BOLD response.

From loss prediction to decision-making
How then, is loss-related computation related to decision-

making? Clearly, what motivates choice in the context of

any type of loss is a desire to reduce it, and this can be

used to define loss or punishment. The Konorskian and

Solomon–Corbitt framework deals with passive (Pavlovi-

an) predictions, but are conventionally thought to govern

two distinct types of aversive decision: avoidance, and

escape [22,23]. The control of escape and avoidance may

be different, because the nature by which information

about outcomes is garnered is different, but in both cases

it is the absence of punishment that motivates behavior.

The paradox created by the ability of ‘nothing’ to act as an

incentive and reinforce actions has stimulated consider-

able research and debate [24]. Two putative solutions to

the avoidance problem are provided by inhibitory

rewards: in the one case (two-factor theory), behavior is

driven by the escape from fear (i.e. offset relief) elicited

by any signal that predicts punishment [25]. In a second

case (safety signal hypothesis), behavior is driven by the
processes in loss-related decision-making, Curr Opin Behav Sci (2015), http://dx.doi.org/10.1016/

www.sciencedirect.com

http://dx.doi.org/10.1016/j.cobeha.2015.09.003
http://dx.doi.org/10.1016/j.cobeha.2015.09.003


When is a loss a loss? Seymour, Maruyama and De Martino 3

COBEHA 118 X–X

179

180

181

182

183

184

185

186

187

188

189
190

191

192

193

194

195

196

197

198

199

200

201
202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219
220

221

222

223

224

225

226

227

228

229

230

231

232
233

234

235

236

237

238

239

240

241

242
243

244

245

246

247

248

249

250

251

252

253

254

255

256
257

258

259

260

261

262

263

Figure 2

Intemal model

Pre-action
state

Choice
mechanism

interference

Innate response

SR habitization

Offset relief following escape from pre-
action state induced fear

Conditioned
inhibition generates
safety signal(SSDR)

Loss

No Loss

Architecture of excitatory loss avoidance

interference

SR habitization

se

Current Opinion in Behavioral Sciences 

The architecture of loss avoidance. A set of coordinated processes

mediate the acquisition and maintenance of avoidance learning, and

similarly, any decision over options involving choosing the lesser of

two punishments. The processes include first, an innate Pavlovian

response to anticipated loss (including species specific defence

reactions (‘SSDR’s), second, escape from fear associated with the

loss predictive pre-action state, third, conditioned reinforcement of a

safety signal, generated through conditioned reinforcement of the relief

state, fourth, goal-directed (model-based) internal model and cognitive

decision system, and fifth, habitization of the avoided action, after

prolonged experience.
(conditioned) reinforcement provided by the inhibitory

outcome state that signals the absence of punishment

(omission relief) [26�,27,28]. There is good evidence for

both these processes [29], but they lead to a problem: can

they sustain behavior after repeated avoidance success,

because the inhibitory learning process should extin-

guish? One possibility is that a simple habit-based system

might take over, which stamps in the repetitive behavior

as if it were a reward [30].

However, these theories struggle to account for avoidance

in the absence of any signals (‘free-operant’ avoidance),

such as when a minimum baseline rate of action execution

is required to ensure no punishments are presented [31]

(e.g. pressing a lever every 20 s to ensure no electric shock

is delivered). This has led to theories of cognitive avoid-

ance that appeal to the remembered representation of

avoided outcomes in the brain [32]. Similar to ‘model-

based’ control for reward-based decision-making [33�],
this type of behavior relies on some sort of internal model

of the environmental structure and contingencies.

Together, this illustrates the fundamental difference

between reward-based and avoidance-based reinforce-

ment, with avoidance being driven by a relief processes

generated through inhibitory interactions, and not

through a primary excitatory process. However, this

should only be manifest in avoidance tasks in which

stimulus driven learning is possible. In explicit tasks

(verbal or written), in which learning is not required or

possible, we would expect simply a model-based system

evaluating the best actions. In addition, during either type

of task, we would expect a reward-like habit system to

take control as soon as a clear pattern of avoidance

becomes successful. Importantly, therefore, in the case

of learned or explicit loss avoidance, one would predict an

overall similar reward-dominant pattern of brain activity

for both reward acquisition and loss avoidance — as is

typically seen.

However, the difference between the reward seeking and

avoidance should be observable early in learning, when

we would expect relief driven reinforcement to be repre-

sented as a negative punishment — a striatal deactivation

preceded by aversive activation induced by the pre-action

state, as occurs for negative Pavlovian prediction errors for

excitatory losses. However, to our knowledge previous

studies have not explicitly looked specifically at the

earliest versus later stages of learning. One reason may

be the methodological problems of doing extended train-

ing in fMRI studies, with confounding effects of time and

attention.

In the case of inhibitory losses, a plausible prediction is

that an aversively motivated avoidance system is not

required at all: since avoidance would require inhibition

of inhibition (e.g. an inhibitory safety signal reflecting the
Please cite this article in press as: Seymour B, et al.: When is a loss a loss? Excitatory and inhibitory p
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absence of loss that itself signaled the absence of reward).

Therefore, inhibitory loss avoidance problems could be

solved with just a reward system, by contrast to the

complex Pavlovian-instrumental interactions required

for excitatory loss avoidance.

A further difference comes from the responses directly

associated with the (excitatory or inhibitory) loss predic-

tion itself. In particular, excitatory losses would be

expected to evoke much stronger innate responses (‘spe-

cies-specific defence responses’ (SSDRs)) which directly

interfere with behavior [34]. In animal studies of primary

punishments, this direct Pavlovian response can exert

powerful control of behavior — sometimes called ‘Pav-

lovian warping’ [35,36]. Again, however, we would only

expect this excitatory Pavlovian response (a positive

striatal signal) early in avoidance behavior, because it

would extinguish as successful avoidance becomes the

norm [37].

In summary, based on good evidence primarily from

animal studies, it seems probably that loss-related deci-

sion-making is under the control of at least five separate

mechanistic processes (Figure 2). As a result, the pattern

of behavior and accompanying neural activity depends

critically on a number of factors, in particular the level of

controllability over loss [38], the amount of experience,
rocesses in loss-related decision-making, Curr Opin Behav Sci (2015), http://dx.doi.org/10.1016/

Current Opinion in Behavioral Sciences 2015, 5:x–x
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C

e presence of cues signally the requirement to avoid,

e schedule of loss delivery, the tonic level of reward or

ss, conditioned and explicitly expected outcomes, the

resence of signals indicating the success of behavior, and

e nature of the loss itself (inhibitory or excitatory).

owever, quite which systems are active in any task

ight not readily apparent from basic analysis of neuro-

aging data.

elation to economic theories of loss
ehavior

 the standard formulation of Expected Utility Theory

9] the agents maximize their utility over a concave

tility-of-wealth. In this framework losses are just lower

vels of (positive) wealth. As the local curvature (con-

avity) of the utility function increases, agents behave in a

ore risk-averse manner. Importantly Prospect Theory

0] introduced a different functional form of utility in

hich losses are conceptually different from gains, since

ey are evaluated relative to a reference point. Notably

entral striatum computations have been shown to be

nsitive to the manipulation in the reference-point

rough market transactions [41]. Around the reference

oint, the Prospect Theory utility function is S-shaped

nd asymmetrical. The S-shape reflects concavity for

otential gains (risk adverse behavior for prospective

ains) and convexity for potential losses (risk seeking

ehavior for prospective losses). The asymmetry relative

 the reference point reflects the fact that the function is

eeper in the loss domain. The magnitude of this asym-

etry is characterized by a parameter called lambda (l)

at neatly account for loss averse behavior (the widespread

vidence people strongly prefer avoiding losses to acquir-

g gains). Therefore in Prospect Theory how the refer-

nce-point is set is crucial to distinguish a gain from a loss.

owever, how the reference-point should be derived is

nclear. Tversky and Kahneman originally proposed that

e reference point is set by the status quo, a subject’s

ealth level at the time of each decision. Other alterna-

ve proposed are the mean of the chosen lottery [42] or a

gged status quo [43], which predicts the willingness to

ke unfavorable risks to regain the previous status quo. A

ore recent proposal from Koszegi and Rabin [44,45��]
ggest that subject’s expectations (and not the status

uo) shapes the reference point and determines what an

gent would perceived as loss. In this model the decision-

aker maximizes a linear combination of a consumption

tility m(w) that is the riskless intrinsic consumption

tility associated with a given level of wealth w and

(r) the utility associated with a given reference level

f wealth:

ðwjrÞ ¼ mðwÞ þ mðmðwÞ � mðrÞÞ

he reference dependent component of this account of

tility ðmðmðwÞ � mðrÞÞÞ strongly resonates with the con-

ept of inhibitory loss described we highlighted here. For
Please cite this article in press as: Seymour B, et al.: When is a loss a loss? Excitatory and inhibitory 
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example, a CEO that expect a profit for her company of

1.3 millions dollars (for the current year) will perceive a

profit of one million as a loss even if the company profit for

previous years were below one million. Similarly if the

same CEO expects that the company will produce a net

loss of one million at the end of the year, will perceive a

loss of half-million as a gain. Critically in this framework

the final utility is not only function of the reference

dependent component but it is also function of consump-

tion utility (m(w)) that is the intrinsic utility for a given

level of wealth w. This other component of utility could

be mapped on what we have described here as an excit-

atory loss and would elicit an active averse representation

since it will impact directly on the wealth of the agent.

Therefore an intriguing possibility is that discrepancies

observed in previous studies arise from a manipulation

have impacted more or less on one of these two compo-

nents that give rise to the final utility; that (as we propose

here) have a segregated computational representation in

the brain. One can imagine, for example, that the method

used in most experiments to generate losses by reducing

the participant monetary compensation by small amounts

might impact significantly on the reference dependent

component of utility (the participant expectation prior the

beginning of the experiment) but might have a negligible

impact on the overall level of the participant’s wealth

dependent utility Further studies should directly and

orthogonally manipulate these two components of utility

to test empirically this hypothesis.

Finally, an interesting view has recently emerged in

behavioral economics suggesting that reference-depen-

dent behavior arises from modulation of attentional

resources. In this framework, loss averse behavior arises

naturally if one assumes that a loss (a reduction in con-

sumption) has a stronger impact on an attention-biased

utility than a corresponding gain [46] without assuming an

asymmetry in the value function. Consistent with this

hypothesis it has been recently shown that losses have a

distinct effect on attention but do not lead to an asym-

metry in subjective value [47]. However, the exact role

played by attention in shaping response to losses is still

unclear and further empirical investigation is required.

However, according to the framework proposed here it is

tempting to suggest that excitatory losses should be more

salient than inhibitory losses and therefore differentially

engage the decision-maker attentional resources.

Conclusions and predictions
Loss related behavior is both neurobiologically complex

and fundamentally different from reward-related

behavior — a fact that is sometimes overlooked. Impor-

tantly the experimental conditions under which loss

behavior is studied critically determines the recruitment

of different brain systems. Here, we propose that the

relative contribution of two types of loss: excitatory and

inhibitory losses, and that their relative representation
processes in loss-related decision-making, Curr Opin Behav Sci (2015), http://dx.doi.org/10.1016/

www.sciencedirect.com
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determines the nature of the brain response in the stria-

tum in passive receipt of loss, and together with the

recruitment of inhibitory rewards, determines to some

extent the nature of loss related decision-making (avoid-

ance).

It is important to note that other structures aside from the

striatum are also strongly implicated in the representation

and control over losses, in particular the amygdala and

insula cortex. The amygdala also represents distinct inte-

grated reward and loss signals [48�,49], but is typically a

little harder to charactise in imaging studies because of its

smaller size and susceptibility to artifact. The insula

cortex appears to have a more complex role in both

value-sensitive functions and ‘interoceptive’ sensory pro-

cessing [50��], making interpretation even more difficult.

Our model makes several testable predictions. First, in

the case of passive loss prediction of simultaneous reward

money and loss, the striatum is known to code a net

reward signal. But for simultaneous pain and reward,

evoking both positive reward and positive aversive sys-

tems, we would expect an amplified signal, even though

the net value would be close to zero.

Second, in purely aversive contexts in which subjects

genuinely felt they could only lose their own money

during an experiment, gains of money should be repre-

sented by negative responses of a dominant aversive

system in striatum.

Third, during excitatory but not inhibitory signaled loss

avoidance (but not free operant avoidance), we would

expect a positive striatal loss signal during very early

learning, that extinguishes along with cue-driven Pavlov-

ian responses, and switches to becomes a positive signal as

successful avoidance is learned.
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