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Abstract

Most utility theories of choice assume that the introduction of an irrelevant option (called the decoy) to a choice set does
not change the preference between existing options. On the contrary, a wealth of behavioral data demonstrates the
dependence of preference on the decoy and on the context in which the options are presented. Nevertheless, neural
mechanisms underlying context-dependent preference are poorly understood. In order to shed light on these mechanisms,
we design and perform a novel experiment to measure within-subject decoy effects. We find within-subject decoy effects
similar to what have been shown previously with between-subject designs. More importantly, we find that not only are the
decoy effects correlated, pointing to similar underlying mechanisms, but also these effects increase with the distance of the
decoy from the original options. To explain these observations, we construct a plausible neuronal model that can account
for decoy effects based on the trial-by-trial adjustment of neural representations to the set of available options. This
adjustment mechanism, which we call range normalization, occurs when the nervous system is required to represent
different stimuli distinguishably, while being limited to using bounded neural activity. The proposed model captures our
experimental observations and makes new predictions about the influence of the choice set size on the decoy effects, which
are in contrast to previous models of context-dependent choice preference. Critically, unlike previous psychological models,
the computational resource required by our range-normalization model does not increase exponentially as the set size
increases. Our results show that context-dependent choice behavior, which is commonly perceived as an irrational response
to the presence of irrelevant options, could be a natural consequence of the biophysical limits of neural representation in
the brain.
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Introduction

At the core of many utility theories used in social and biological
sciences lies a central axiom, called independence from irrelevant
alternatives (IIA). The IIA axiom states that the relative preference
between any pair of options does not depend on what other
options might be present [1–3]. In decision neuroscience, IIA
holds in the appealing model in which separate values are
computed for each different option, and values are then compared
to make a choice [4,5]. Nevertheless, a wealth of data has clearly
shown that the IIA axiom is often violated behaviorally [6,7]. For
example, it has been shown that adding a third ‘‘decoy’’ option
into a choice set often results in a predictable shift in the relative
preference between the other two options of an initial pair. A
striking example is when the decoy option is dominated by one
initial option – i.e., all of the new option’s attributes are worse than
the existing option attributes – but is not dominated by the other
initial option. The decoy is an ‘‘irrelevant alternative’’ because it
would never be chosen if it is dominated by another option.
Introducing such a decoy results in an increased preference for the

initial option that dominates the decoy [6,8–10], a phenomenon
called the attraction effect or the asymmetric dominance effect.

Decoy effects can be considered an error in logical reasoning
and there is some evidence that they can be exploited by consumer
marketing and political strategies [11–13]. Interestingly, these
effects are not limited to humans [14–16], they increase after
lesion of the medial orbitofrontal cortex in macaques [17], and
they can be mitigated by improving self-control or increasing
blood glucose [18]. Considering that under realistic scenarios,
choices are usually made in particular contexts [19], exploring the
neural mechanisms underlying context-dependent preference is
crucial for better understanding of choice behavior in general [20].

Several explanations have been proposed to account for the
preference reversal induced by the type of decoy in a choice set.
Most of these models are based on verbally-described heuristics
and are not mathematically formalized, which makes them
difficult to test or generalize to new experimental paradigms
[21,22]. An exception is the context-dependent ‘‘advantage’’
(CDA) model of Tversky and Simonson that coherently accounts
for attraction and other context effects [7]. The CDA relies on the
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comparison between different attributes of the available options to
account for context effects [23]. The CDA model is the precursor
of more elaborate connectionist models such as the leaky
competing accumulator (LCA) model [24,25] or the decision field
theory (DFT) [26,27]. All these models aim to account for many
types of context effects such as attraction, similarity, and
compromise effects within a single framework [28]. The two
popular connectionist models, the LCA and DFT, differ in a
number of key features, such as the requirement of loss aversion,
but like the CDA model, their core mechanism is comparison
between each pair of option attributes. In most cases, psycholog-
ical models such as CDA, LCA, and DFT, successfully reproduce
the behavioral observations that they aim to explain. However
comparing all attributes between all pairs of options in the choice
set is computationally demanding, especially as the number of
options and attributes grows. Other models of choice avoid these
demands by assuming limited sequential attribute comparison
(e.g., elimination-by-aspects [29], for which there is evidence [30]),
but those models cannot explain the attraction effect.

We propose a new model to explain context effects, based on
known biophysical limits of neural representation. The guiding
presumption in our range-normalization (RN) model is that
subjective values of option attributes are encoded in the firing rate
of neural populations, rather than other aspects of neural firing
[31]. If so, mental representations of subjective values will be
bound by the same biophysical limits that govern neural
representations. Namely, neural responses are bound from below
by zero and from above by a few hundred spikes per second and,
therefore, neurons can only represent a set of stimuli using a
limited range of firing rates. Faced with a new set of stimuli to
encode, however, neurons can adjust their dynamic range (i.e.
interval between threshold and saturation points) to represent
these stimuli distinguishably. We propose that this adjustment
mechanism, which we call range normalization, is the principal neural
mechanism underlying context-dependent effects.

Normalization of the neural response is common in vision and
other sensory modalities, and could be a more widespread
property of neural representations [32]. To account for context

effects, the range-normalization mechanism we propose here is
computationally easier than comparison of all pairs of option
attributes, since only the two most extreme attribute values are
needed to compute the range. We implement a specific functional
form of range normalization and test predictions of the outcome
model using a novel within-subject design.

We first describe experimental results that demonstrate within-
subject decoy effects and reveal some new properties of these
effects (correlation between effects across types of decoys and
decoy distance). Second, we describe the CDA model, how
attribute comparison gives rise to context effects in this model, and
its predictions in our experimental paradigm. Third, we present
our RN model and its predictions for context effects. Finally, we
describe new, contrasting predictions of the CDA and RN models
about the influence of choice set size on context effects and the
neural plausibility of these models.

Results

The experimental paradigm to test within-subject decoy
effects

Our experimental paradigm consisted of two tasks: an initial
estimation task and the decoy task. We used the subject’s choice
from the estimation task to calculate the subject’s attitude toward
risk in order to tailor subject-specific target (T) and competitor (C)
gambles that are equally preferred (see below). This step is
necessary because context effects are most strongly demonstrated
when T and C are equally valuable. In the second part of the
experiment (decoy task), we assessed the preference between
jittered versions of the T and C gambles in the presence of a third
decoy gamble (see Methods for more details).

Behavioral results from the estimation task
During the estimation task, the subject was presented with two

options. These options were risky monetary gambles, described by
probability p of winning a monetary reward of magnitude M,
denoted (p,M). On each trial, the subject selected between pairs of
gambles, always consisting of one fixed low-risk gamble, (0.7, $20),
and one high-risk gamble, (0.3, $M), for many different values of
M (see Methods for more details).

The data analysis of the estimation task confirmed that all
subjects appeared to understand the task and respond to changes
in magnitude, preferring the high-risk gamble when its reward
magnitude was large, but not when its reward magnitude was
small (Figure S1 in Text S1). Logistic fitting of these choices
yielded a subject-specific value of the high-risk gamble magnitude
M for which the low- and high-risk gambles are equally
subjectively valuable. (Figures S2A and S2B in Text S1). Across
subjects, we found a wide range of values for the indifference high-
risk magnitude and the sensitivity to reward magnitude (1=sM ),
but these two quantities were not significantly correlated (p = 0.33)
(Figure S2C in Text S1).

As a validity check, we computed the relative expected utility of
each pair of gambles (DEV ), and divided the pairs into sets with
DEV either greater than 2sM (easy choice pairs), or less than 2sM

(hard choice pairs). If value is being inferred accurately, response
times (RTs) should be slower for hard choice pairs that are close in
subjective value. As predicted, the average RT was about
110 msec longer on trials with hard choice pairs, and that relation
also held for all but one subject (Figure S3 in Text S1).

Modulation of preference by the decoy
On each trial of the decoy task, three monetary gambles were

displayed on the screen for an 8 sec evaluation period. At the end

Author Summary

While faced with a decision between two options for
which you have no clear preference (say, a small cheap TV
and a large expensive TV), you are presented with a new
but inferior option (say, a medium expensive TV). The mere
presence of the new option, which you would not select
anyway, shifts your preference toward the expensive large
TV. This simple example shows how the introduction of an
irrelevant option, called the ‘‘decoy,’’ to the choice set can
change preference between existing options, a phenom-
enon often called the context-dependent preference
reversal. A number of models have been proposed to
explain context effects. Despite their success, they are
either uninformative about the underlying neural mecha-
nisms or they require comparison of every possible pair of
option attributes, a computation that is unlikely to be
implemented by the nervous system due to its high
computational demand and undesirable outcomes when
the choice set size increases. Here we present a novel
account of the context-dependent preference based on
the adjustment of neural response to the set of available
options. Moreover, we show results from a novel behav-
ioral task designed to test contrasting predictions of our
model and a classic model of context effects.

Neural Model of Context-Dependent Choice
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of this period, one of the three gambles was removed from the
screen and subjects had only 2 sec to choose one of the two
remaining gambles in a selection period (Figure 1A). Two of three
initial gambles were the low-risk gamble (target T) and the subject-
tailored high-risk gamble (competitor C). The third gamble was
the decoy gamble (D) that was randomly chosen from a set of
gambles with a wide range of attribute values (see Figure 1B and
Methods for more details).

On two thirds of the trials (regular trials), the decoy gamble was
removed after the evaluation period and the subject had to choose
between T and C gambles. On the remaining one third of the
trials (catch trials), either the T or C gamble disappeared. The
catch trials were included to conceal the underlying structure of
the task and were subsequently discarded from the analysis (since
they do not provide choices between T and C). Therefore, we only
analyze the regular trials to investigate how the preference
between T and C gambles changed as a function of a decoy that
was present at the evaluation period, but not available in the
selection period.

Having a long evaluation period (8 sec) and a short selection
period (2 sec) forces subjects to evaluate and ‘‘pre-choose’’
options by ranking them during the evaluation period; therefore,
they would be prepared to make a rapid choice in the 2-sec
selection period. This ensures that presentation of the decoy

during the evaluation period can influence context-dependent
processes of assigning values enough to have a behavioral impact
during rapid selection. This ‘‘phantom decoy’’ design allowed us
to study the effect of dominant decoys (decoys that are better
than either T or C gambles) as well as dominated decoys (see
below).

We found that subjects’ preference between T and C was
systematically influenced by the attributes of the decoys. The first
indication of the decoy influence on the subsequent choice was
that the majority of our subjects did not select T and C gambles
equally (Figure S4 in Text S1), though they were constructed (from
the estimation task data) to be equally preferable.

As in previous studies, we divided trials into 6 groups (D1 to D6)
based on the position of the decoy (Figure 1B). Decoys in positions
D1 and D4 are called the asymmetrically dominant decoys because
they dominate either T or C (they are less risky and also have
larger reward magnitudes), but do not dominate both. Decoys in
positions D3 and D6 are asymmetrically dominated decoys since
they are either worse than the target (D6) or the competitor (D3)
on both dimensions (i.e. they are more risky and also have smaller
reward magnitudes), but are only dominated by one of T and C
[6,10]. Finally, decoys in positions D2 and D5 are similar to the
target and the competitor and are better on one dimension but
worse on another. They are called similar decoys [28,33].

Figure 1. Experimental design and behavioral results. (A) Timeline of the experiment during the decoy task. A trial started with a fixation
point, followed by the presentation of three options (monetary gambles) on the screen for 8 sec (evaluation period). These gambles were the target
(T) and the competitor (C) gambles, tailored to be equally preferable, and a third gamble, the decoy (D). At the end of evaluation period, one of the
three gambles was removed from the screen and subjects had only 2 sec to choose one of the two remaining gambles by pressing a button
(selection period). (B) Positions of decoys with respect to T and C. Decoys were presented in different locations of the attribute space: probability
(dimension 1) and magnitude (dimension 2). For data analysis, decoys were grouped into 6 locations, depending on theirs position with respect to
the closest gamble to them. Decoys at D1 and D4 regions are referred to as the asymmetrically dominant. Decoys at D3 and D6 regions are referred to
as the asymmetrically dominated. Finally, decoys at D2 and D5 regions are referred to as the similar decoys. (C, D) Modulation of preference for the
target, and the decoy efficacy as a function of different decoys. The average of modulation for each decoy is plotted in black (error bars are the s.e.m.)
and the gray symbols show the value for individual subjects. The star on a given decoy location shows that the modulation for that decoy was
significantly different from zero (Wilcoxon signed rank test, p,0.05). Decoy effects were significant for all decoys except D2 decoys.
doi:10.1371/journal.pcbi.1002607.g001

Neural Model of Context-Dependent Choice
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We quantified decoy effects by computing the difference
between the probability of selecting the target for a given decoy
location, pT (Di), and the overall probability of choosing the target
across all trials, pT (Figure 1C). We found that the decoys
influenced subjects’ preference between T and C gambles (one-
way ANOVA, p,0.0001) and the average values of (pT (Di){pT )
over all subjects were significantly different from zero (Wilcoxon
signed rank test, p,0.05) except for decoys in position D2.

For statistical purposes, it was useful to scale decoy effects to
account for the fact that some subjects had an overall target choice
frequency, pT , which was very different from 0.5 (despite the
attempt to control this frequency using the estimation task). A
scaled measured of decoy efficacy (see Methods) that adjusts for the
target choice frequency still showed strong within-subject decoy
effects (one-way ANOVA, p,0.0005) similar to changes in
preference presented earlier (Figure 1D).

In addition, we replicated three main findings regarding decoy
effects. Firstly, we observed a robust attraction effect similar to
what has been shown in previous between-subject studies [6,10].
That is, the asymmetrically dominated decoys D3 and D6 increased the
selection of the option that dominated them: competitor C and
target T, respectively (Wilcoxon signed rank test, p,0.05).
Secondly, the asymmetrically dominant decoy D1 and D4 decreased
the selection of the option which was dominated by those decoys:
competitor C and target T, respectively (Wilcoxon signed rank
test, p,0.05). We were able to study this effect due to our task
design where the dominant decoy disappeared during the selection
time. Thirdly, decoys in positions D2 and D5 decreased the
selection of the option close to them (C and T, respectively);
however, only the effect of decoys in position D5 was statistically
significant (Wilcoxon signed rank test, p,0.05). These effects have
been previously described as the similarity effects [29], indicating
that decoys take more share from the option in the choice set with
which they are most similar, thereby decreasing the preference for
the option similar to them.

Thus, our results confirm previous between-subject findings and
extend them to a within-subject design. Most preference reversals
due to differences in descriptions, procedures or context are
established by between-subject designs. Preference for between-
subjects designs is guided by the intuition that two conditions that

change a normatively irrelevant detail will be transparently
equivalent if both conditions are presented in a within-subjects
design; however, the normative irrelevance is cognitively inacces-
sible if only one condition is presented, in a between-subjects
design. Establishing context-dependence in a within-subject design
therefore shows its robustness. The within-subject design also adds
substantial statistical power, and allows us to compute the within-
subject correlation between effects for different decoys (which a
between-subject design cannot do).

We also examined relationships between the overall decoy
effects, as shown by a given subject and his/her risk aversion
parameters from the estimation task. We found no relationship
between the overall susceptibility of individual subjects to decoys
(defined as the average of absolute values of decoy efficacies for
each subject) and their indifference values (r = 20.2, p = 0.38), or
between the overall susceptibility and the sensitivity to the reward
magnitude (r = 20.21, p = 0.37).

Dependence of decoy effects on distance and correlation
between decoy effects

Next, we divided all regular trials into close and far trials,
depending on the distance between the decoy and the gamble
closest to it. Then we computed the decoy efficacy for each decoy
location (Figure S5 in Text S1). For this analysis, decoy efficacies
for close and far decoys were defined relative to the overall
probability of selecting T only for the corresponding set of close or
far decoys; therefore, this definition controlled for possible
differences between the close and far sets of gambles. Close
decoys had no significant effect (one-way ANOVA, p = 0.69), while
far decoys had a very strong effect (one-way ANOVA, p,10211)
(Figure 2A). Moreover, for all decoys with significant effects over
all trials (except D4), the far decoy effect was larger than the close
decoy effect (two-sample t-test, p,0.01).

We then examined the correlation between different decoy
effects within-subjects. This correlation analysis provided a tool for
testing whether different types of decoy effects were generated by
the same mechanisms or not. We grouped decoys at different
locations into three decoy types—asymmetrically dominant decoys
(D1 and D4), similar decoys (D2 and D5), and asymmetrically

Figure 2. Correlation between decoy effects and dependence of decoy effects on the distance. (A) Dependence of the decoy efficacy on
the distance of decoy from its closest option. The mean decoy efficacy for each decoy type is plotted for close (gray) and far trials (light gray),
separately. The error bars are the s.e.m. and the light or dark gray star shows an effect is significantly different from zero for the corresponding
location and distance (Wilcoxon signed rank test, p,0.05). For all subjects, decoy efficacies are larger in magnitude for far decoy trials than close
decoy trials, for all decoys except D2 and D4 where they are indistinguishable. (B) Mean decoy efficacies for different decoy types: dominant, similar,
and dominated. Each circle represents the decoy efficacy for an individual subject and the error bars are the s.e.m. The star on a given decoy type
shows that the decoy efficacy is significantly different from zero (Wilcoxon signed rank test, p,0.05). (C) Anticorrelation between efficacies of
dominant and dominated decoys. The dashed line shows the linear fit.
doi:10.1371/journal.pcbi.1002607.g002

Neural Model of Context-Dependent Choice
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dominated decoys (D3 and D6). We then computed the average
decoy efficacy for each of these three decoy types in terms of their
effects on the preference for the gamble close to or far from them.
A positive (or negative) decoy efficacy means an increase (or
decrease, respectively) in the preference for the gamble close to the
decoy with respect to the gamble far from it.

The different decoy types do influence the choice preference
differently (one-way ANOVA, p,0.0001). Specifically, asymmet-
rically dominant decoys decreased preference for the gamble close
to it (Wilcoxon signed rank test, p,0.05) while asymmetrically
dominated decoys increased preference for the gamble close to it
(Wilcoxon signed rank test, p,0.05) (Figure 2B). There were no
significant effects for similar decoys (Wilcoxon signed rank test,
p = 0.07). Interestingly, we found a significant negative correlation
between asymmetrically dominant and asymmetrically dominated
decoy efficacies (r = 20.57, p = 0.008) (Figure 2C).

Behavior and predictions of the CDA model
Next we tested whether the CDA model could reproduce the

decoy effects observed in our experiment. First, we briefly describe
the CDA model of Tversky and Simonson [7] and we present
some results and predictions of this model that are relevant to our
experimental paradigm. For simplicity, we assumed options have
only two attributes and that the overall subjective value of an
option is a weighted sum of its values on these attributes. The latter
was assumed to avoid altering the original CDA model for the case
where the overall value of an option is the product of its attribute
values (as for risky gambles).

In the CDA model, the context effects arise from pairwise
comparison of all options in the choice set. This pairwise
comparison is performed through computing quantities termed
the advantage and disadvantage. More specifically, the advantage of
option T with respect to option C, A(T ,C), is defined as

A(T ,C)~
X

i

Ai(T ,C)

where

Ai(T ,C)~
vi(Ti){vi(Ci) if vi(Ti)wvi(Ci)

0 otherwise

!

Similarly, the disadvantage of option T with respect to option C,
D(T ,C) is defined as

D(T ,C)~
X

i

Di(T ,C)

Di(T ,C)~d(Ai(C,T))

where d(t) is an increasing monotonic function of t (note the
change in the order of T and C in the argument of the advantage
and disadvantage functions). Tversky and Simonson included loss
aversion in their model, by assuming that the disadvantage looms
greater than the advantage, that is d(t)wt [7]. For simplicity, we
assume a linear relationship, d(t)~lt where lw1.

The advantage and disadvantage are used to define the relative
advantage of option T with respect to option C,
R(T ,C)

R(T ,C)~
A(T ,C)

A(T ,C)zD(T ,C)
ð1Þ

Finally, the value of an option in the choice set increases
proportionally to the sum of the relative advantages between that
option and each other option in the choice set. With three options
T, C, and D, the overall values of options including context effects
are

~VV(T)~V (T)zh(R(T ,C)zR(T ,D))

~VV(C)~V (C)zh(R(C,T)zR(C,D))

~VV(D)~V (D)zh(R(D,T)zR(D,C))

ð2Þ

where q determines the strength of the context effects, and V (X )

and ~VV (X ) are the subjective values of option X before and after
including the context effects. We can apply a sigmoid function to
the difference in option values of T and C to obtain the choice
preference between these options, before and after the decoy
introduction.

In order to illustrate the behavior of the CDA model over a
wide range of decoy attributes, we calculated the change in the
value of original options (i.e. the options of the choice set before
the decoy was introduced) as a function of each decoy’s attributes
(Figure 3A). This analysis showed that the maximal change in the
value of a given option happens when the decoy is dominated
(both decoy attributes are smaller than the attributes of that
option). Likewise, when the decoy is dominant (both decoy
attributes are larger than the attribute of a given option), the
change in that option value is zero, independent of the exact
location of the decoy. These option value changes happen because
the relative advantage is one for dominated decoys and zero for
dominant decoys. Overall, decoy introduction can only add a non-
negative amount to the value of original options in the choice set.
This property has undesirable consequences, which we discuss
later.

Next, we computed the change in the difference between the
values of the original options (and the resulting change in
preference between them) as a function of the decoy attributes
(Figure 3B). This analysis revealed some important aspects of the
CDA model. Firstly, no change in preference occurs when both
decoy attributes are smaller or larger than the attributes of both of
the original options. This means that in the CDA model, such
decoys are irrelevant for the choice preference. Secondly, the
change in preference is larger when the decoy is dominated by the
close option rather than when the decoy is dominant (Figure 3B),
because of loss aversion (d(t)wt). Finally, preference reversal is
stronger for decoys close to the original options than for far decoys
(Figure 3B).

For better comparison of the results of the CDA model with
our experimental data, we calculated the average models’ choice
behavior for decoys at locations in the attribute space that
qualitatively match our experimental design (see Methods for
more details). The CDA model exhibits attraction and asymmet-
rically dominant decoy effects, but not similarity effects (as has
been previously pointed out [26], Figure 3C). However, because
both attraction and asymmetrically dominant decoy effects are
driven by the same mechanism (but in an opposite direction), the
values of decoy efficacies for these decoys are anti-correlated
(data not shown). Moreover, as mentioned above, the decoy
effects are stronger for attraction than asymmetrically dominant
decoys due to the inclusion of the loss aversion concept in the
CDA model (Figure 3C). There is some evidence for this
prediction when we group the experimental data based on the
decoy type (Figure 2B). However, fitting of our data using the
CDA model yielded l~0:87, which is closer to loss-neutrality

Neural Model of Context-Dependent Choice
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(Figure S6 in Text S1). Finally the CDA predicts that close decoys
have stronger effects than far decoys (Figure 3D). This prediction
of the CDA model is not supported by our experimental data
(Figure 2A).

The Range-Normalization (RN) model
Here we propose a model for context effects that can account

for our experimental observations and is based on plausible limits
of neuronal elements in representing sensory and cognitive
stimuli. Specifically, for neural representation to be useful it
should be able to distinguish between any two unequal stimuli in
the set of represented stimuli. However, neural firing rates are
bounded between zero and a few hundred spikes per second.
That is the neural representation could be variable only in the
interval between a threshold and saturation points (dynamic
range); outside this interval, the stimuli are represented with the
same response. Nevertheless, the response of a neuron (or a
population of neurons) to a set of stimuli can still vary, depending
on the relationship between the location of the threshold and
saturation points and the values of all stimuli that have to be
represented in the firing activity. Considering the mentioned
constraints, it is therefore plausible that the response of a neuron
or a population of neurons can be adjusted to a new set of stimuli
that it needs to represent (widespread evidence of neural
adaptation is reviewed in the Discussion). We show that this

neural adjustment could explain the context-dependent prefer-
ence reversal.

In this model we assumed that the overall value of a given
option is represented by a neural population that receives inputs
from different neural populations selective to an individual option
attributes (see Method for more details). Assuming a linear
response function, the overall value of an option, which is reflected
in the firing activity of an option-selective population, is equal to a
weighted sum of the neural responses to its attribute values

V (A)~RA~wA1r1(A1)zwA2r2(A2) ð3Þ

where RA is the response of population selective to option A, ri(Ai) is
the neural response of attribute-selective population i to option A,
and wAi is the weight of connections from the attribute-selective
population i to the option-selective population A.

For simplicity, we considered the case in which the neural
response of attribute-selective populations is a linear function of
stimulus value, s, when s is above a threshold ct,i and below a
saturation point cs,i. In addition we normalized the response to the
maximum response level so that the maximum response is
represented with 1. Note that any difference in the maximum
response of neurons encoding different attributes can be absorbed
into the connection weights wi’s. Therefore, the neural represen-
tation attribute i can be written as

Figure 3. Effects of the decoy on valuation in the CDA model. (A) Predicted change in the overall value of the target ( ~VV (T){V (T)) and its
competitor ( ~VV (C){V (C)) as a result of decoy introduction at different locations of the attribute space. The change in the overall value of each option
and their difference is normalized by the value of these options before the inclusion of the context effects. The decoy introduction results in maximal
(zero, respectively) change in the overall value of a given existing option, if both decoy attributes are smaller (larger, respectively) than the attributes
of that option. (B) The predicted difference between the values of target and competitor ( ~VV (T){ ~VV (C)) as a result of decoy introduction at different
locations of the attribute space. Conventions are the same as in A. Introduction of the decoy results in preference reversal for many decoys while this
effect is stronger for decoys that are closer to the original options than the farther decoys. Note that the effect is stronger when the decoy is
dominated by the close option than when the decoy is dominant to that option (for this simulation we set w1~w2~4, h~V (T)=1:3, and l~2). (C)
The probability of selecting T for different decoys, as defined in Figure 1, for two realizations of the CDA model: without the inclusion of the loss
aversion (l~1) and with moderate loss aversion (l~2). Dashed lines are to guide the eye. In both cases, CDA model predicts the attraction and
asymmetrically dominant effects (i.e. reversal for D1, D3, D4, and D6) but no effects for D2 and D5 decoys. (D) Decoy efficacies for different decoys
predicted by the CDA model with moderate loss aversion (l~2) and separately for close and far decoys. Decoy efficacies are smaller in magnitude for
far decoys than close decoys.
doi:10.1371/journal.pcbi.1002607.g003
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ri(s)~0 if svct,i

ri(s)~ki(s{ct,i) if ct,iƒsƒcs,i

ri(s)~1 if s§cs,i

ð4Þ

and so is determined by two parameters ct,i and cs,i. In order to
simplify the notation, we drop the subscript i in the rest of the
manuscript, but it should be understood that the neural
representation could be different for each attribute.

In order to express the neural response in terms of the range
and configuration of represented stimuli, we define two new
parameters, ft and fs, which we call the representation factors

ft:
smin{ct

sn min{smin
if ct§smin

ft:
smin{ct

sn min{ct
if ctvsmin

8
><

>:

fs:
cs{smax

cs{sn max
if cs§smax

fs:
cs{smax

smax{sn max
if csvsmax

8
><

>:
ð5Þ

where smin and snmin are the minimum and next-to-minimum values
of s, and smax and snmax are the maximum and next-to-maximum
values of s, respectively. The representation factors, ft and fs,
determine the fraction of the value space around the minimum
and maximum stimuli that are below or above the threshold or
saturation points, respectively. This can be seen more clearly by
expressing the threshold and saturation points, ct and cs, in terms of
the representation factors

ct~
smin{ftsn min

1{ft
, if ft§0

ct~smin{ft(sn min{smin), if ftv0

8
><

>:

cs~
smax{fssn max

1{fs
, if fs§0

cs~smaxzfs(smax{sn max), if fsv0

8
><

>:

ð6Þ

Note that a positive fs implies that the neuron never reaches to its
maximum possible faring rate. Therefore, the representation
factors determine efficiency of a neuron (or a neural population) in
representing a set of stimuli in their firing activities (see below), and
so they are inherent properties of the neuron. By imposing
{1vftv1 and {1vfsv1, it is guaranteed that neural responses
to different stimuli are distinct (except when there are only two
presented stimuli, for which an additional constraint needs to be
imposed: ftzfsv1).

In order to show how neural representation depends on the
representation factors defined above, we plotted the neural
responses for different values of representation factors in the case
in which there are only two options (C and T) in the stimulus set
(Figure 4A). For positive values of the representation factors
threshold and saturation points are below and above the
minimum and maximum stimuli, respectively. On the other
hand, for negative values of representation factors, threshold and
saturation points are above and below the minimum and
maximum stimuli, respectively (which means extreme stimuli
can be represented with the same response because they lie
outside the dynamic range).

Therefore, the representation factors determine the relative
position of the dynamic range of the neural response with respect
to a set of represented stimuli. However, the above equations show
that when a new stimulus is introduced to the stimulus set, the
threshold and saturation points need to be adjusted in order for the
representation factors to stay the same or adapt to the new set.

Using Eq.6 and assuming that the representation factors stay the
same before and after decoy introduction (a condition which can
be relaxed as shown below), we computed the adjustment of neural
response and changes in the response to the original options due to
decoy introduction (Figure 4B). The decoy may introduce a new
minimum or maximum (or a next-to-minimum or next-to-
maximum) to the stimulus set, and in all of these cases it changes
the configuration of stimuli.

If there were originally two options in the set, the decoy
introduction always changes the neural representation and
therefore changes the value of the original options. More
interestingly, the values of the original stimuli before and after
decoy introduction depend on the relative decoy value (Figure 4B
rightmost panel). This change is positive if the decoy is between
the two original options or close to them, and it is negative if the
decoy introduces a new minimum or maximum. Overall, the
change in the differential response depends on the representation
factors and decreases as the decoy becomes farther from the
original options. Interestingly, we found that the ratio of the
differential response after the decoy introduction to before the
decoy introduction is inversely proportional to the ratio of the
range of stimulus values after to before decoy introduction (see
Text S1). For this reason, we call our proposed mechanism for
neural adjustment the range normalization.

For the above simulations we assumed that adjustment to a new
set of stimuli is perfect such that the neural response in terms of
representation factors stay the same. However, it is possible that
due to biophysical constraints, this adjustment is not fully realized
(i.e. partial normalization) while neurons still represent each
stimulus with different responses. To incorporate partial range
normalization, we set the threshold and saturation points after the
introduction of the new stimulus to

~cc’t~ctzqr(~cct{ct) conditioned that ~cc’tvsn min

~cc’s~cszqr(~ccs{cs) conditioned that ~cc’swsn max

ð7Þ

where ~cct and ~ccs are the threshold and saturation points after the
decoy introduction as described by Eq.6, and qr is a quantity
between 0 and 1 that determines the degree of range normaliza-
tion. The extra conditions assure that all stimuli are represented
with different responses. If qr~0, the neural response is not range
normalized to the presentation of the new stimulus, and if qr~1,
the range normalization is complete. Examples of a partial range
normalization and the resulting change in the value of two original
options are shown in Figure 4C (for qr~0:25). These results
showed how the degree of range normalization could control the
decoy effects.

A limiting factor for neural responses to distinguish between
different stimuli is the ubiquitous noise in the nervous system [34].
The effects of noise on range normalization are beyond the scope
of this work, however, we considered a basic consequence of noise
inclusion in our range-normalization model. We assumed that in
order for the neural response to be distinguishable in the presence
of noise, the slope of neural response (k) could not be indefinitely
small. Therefore, we imposed an extra constraint on the neural
representation to prohibit the slope from becoming smaller than a
minimum value (kmin). By adding this constraint to the RN model
(see Methods for details), we found that the change in the
differential response to original options reaches a plateau when the
decoy is very far from the original options (Figure 4D). This
property is psychologically plausible, however, it cannot be tested
with our data since we did not use very far away decoys in our
experiment.
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Behavior and predictions of the RN model
So far, we have shown how decoy introduction changes the

neural response to original options based on how neurons
represent a given attribute. Here we demonstrate how decoy

introduction changes the preference between the original (T and
C) options as observed in our experiment.

We first show how range normalization results in the attraction
effect when a decoy that asymmetrically dominates T (but no C) is

Figure 4. Neural representation before and after decoy introduction and its effect on the valuation process in the range-
normalization model. (A–D) Neural responses to the original options (marked with gray vertical dotted lines at 25 and 75 a.u.) for different values
of representation factors. (E) Neural representation after the decoy introduction in the RN model and resulting changes in the differential response to
T and C. In the left three panels, the decoys are presented at 10, 35, and 110, respectively (marked with black vertical lines). The most right panel
shows the change in the differential response to original options after and before decoy introduction as a function of the decoy value, D. The
representation factors are the same as in D. (F) Neural representation after decoy introduction in the RN model with partial adjustment and resulting
changes in the differential response to T and C. Conventions are the same as in E. (G) Neural representation after decoy introduction in the RN model
with slope constraint (kmin~0:015) and resulting changes in the differential response to T and C. Conventions are the same as in E. Overall, the RN
model predicts changes in the differential response to original options before and after the decoy introduction which are larger when decoys
introduces a new maximum or minimum stimulus to the choice set and these effects increase with the distance, but reach to a fix value when the
slope constraint is imposed.
doi:10.1371/journal.pcbi.1002607.g004
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introduced. The difference between option values before and after
decoy introduction is equal to (using Eq.3)

V (T){V (C)~w1(r1(T1){r1(C1))zw2(r2(T2){r2(C2))~0 ð8Þ

~VV (T){ ~VV (C)~w1(~rr1(T1){~rr1(C1))zw2(~rr2(T2){~rr2(C2)) ð9Þ

where ~rri(Xi) is the neural response to option X after the decoy
introduction. By dividing the last equation by r1(T1){r1(C1) and
using Eq.8 we obtain

~VV (T){ ~VV (C)

r1(T1){r1(C1)
~w1(

~rr1(T1){~rr1(C1)

r1(T1){r1(C1)
)zw2(

~rr2(T2){~rr2(C2)

r1(T1){r1(C1)
)

~w1(
~rr1(T1){~rr1(C1)

r1(T1){r1(C1)
){w1(

~rr2(T2){~rr2(C2)

r2(T2){r2(C2)
)

~w1
~rr1(T1){~rr1(C1)

r1(T1){r1(C1)
{

~rr2(T2){~rr2(C2)

r2(T2){r2(C2)

" #

The first term in the last expression is less than one because the
decoy introduces a new maximum in dimension 1, and the second
term is larger than 1 as the decoy does not introduce a new
minimum nor a maximum in dimension 2 (see Figure 4).
Therefore, the sum of the parenthetical terms is negative so that
~VV (T){ ~VV (C)v0, which shows that decoy introduction makes C
preferred to T.

We then simulated change in preference due to decoy
introduction at different locations (see Methods for details). We
assumed that option attributes on a given dimension (e.g.
monetary value) are represented by a neural population selective
to that attribute (an attribute-selective population). The attribute-
selective populations in turn project to neural populations
representing the overall value of individual options (an option-
selective population). The strength of these projections determines
the weight of each attribute dimension on the overall value (Eq.3).
Subsequently, the outputs of the option-selective populations
project to a decision-making circuit, allowing the model to choose
between the available options.

Figure 5. Effects of the decoy on valuation in the range-normalization model. (A) Predicted change in the overall value of the target
( ~VV (T){V (T)) and its competitor ( ~VV (C){V (C)) as a result of decoy introduction at different locations of the attribute space. Conventions are the
same as in Figure 2A. For these simulations w1~w2~4, ft~0:2, and fs~{0:2 for both dimensions, and the slope constraint is imposed
(kmin~0:015). (B) The predicted difference between the values of target and competitor ( ~VV (T){ ~VV (C)) as a result of decoy introduction at different
locations of the attribute space. Conventions are the same as in Figure 2B. (C) Decoy efficacies for different decoys for two realizations of the RN
model: with representation factors equal to zero (diamonds), and with an asymmetric representation factors for the threshold and saturation
(squares): ft,1~0:2,fs,1~{0:2,ft,2~0:2 and fs,2~{0:2. The model with asymmetric representation factors shows moderate similarity effect, in
addition to the attraction and asymmetrically dominant decoy effects. (D) Inter-subject variability and dependence of decoy effects on the distance of
the decoy from the closest option. Decoy efficacy for each instantiation of the RN model at each decoy location is shown with a gray circle and the
average decoy efficacies are computed for all decoys (black diamond), close decoys (dark gray), and far decoys (light gray). Dashed lines are to guide
the eye and the error bars show the standard deviation. Overall, the RN model captures the attraction and asymmetrically dominant decoy effects
while it does not show significant similarity effect. Moreover, decoy efficacies are larger in magnitude for far decoys than close decoys. (E)
Anticorrelation between dominated and dominant decoy effects in the RN model. The average decoy efficacy for dominant and dominated decoys
are computed for the same set of simulations as in D. The dashed line shows the linear fit.
doi:10.1371/journal.pcbi.1002607.g005
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We found that the values of existing options are decreased or
increased depending on the location of the decoy. These changes
reach maximal values if the decoy is at a certain distance from the
existing options. (Figures 5A and 5B). The fact that decoy effects
do not increase indefinitely as the decoy becomes farther from the
original options is due to consideration of noise in the model.

For better comparison of the behavior of the RN model with the
CDA model and the experimental data, we calculated the average
models’ choice behavior for decoys at locations of the attribute
space that qualitatively match the experimental design (the same
as in Figure 5A). We found that similar to the CDA model, the RN
model captures attraction and asymmetrically dominant decoy
effects, but it does not capture similarity effects without including
asymmetry in the representation factors of the two attributes
(Figure 5C, and Figure S6 in Text S1). Interestingly, the behavior
of the RN with representation factors equal to zero is qualitatively
similar to the CDA model with loss-neutrality (Figure 3). In order
to address between-subject variability, we simulated the model
over a wide range of representation factors, and we found that
overall, average behavior of many simulated subjects with this
model follows the same trend as the model with zero represen-
tation factor (Figure 5D). However, in contrast to the CDA model,
the decoy effects were stronger for far decoys than for close decoys.
In addition, we found a significant anticorrelation between decoy
effects for the attraction and asymmetrically dominant decoys
(Figure 5E).

The CDA and RN models presented above, account for context
effects based on very different assumptions and premises, and
furthermore predict different patterns of decoy effects for far and
close decoys. More importantly, different mechanisms underlying
context effects in the presented models result in very different
predictions regarding the influence of the choice set size on these
effects, as described below.

Biophysical plausibility and set size
Although the CDA model captures most context effects, it is

unclear how computations required by this model could be
implemented biologically due to two main issues. First, in order to
compute the advantage and disadvantage, every pair of options in
the choice set should be compared. This causes a combinatorial
problem because as the choice set becomes larger the number of
required comparisons grows as N(N{1), where N is the number
of options in the choice set. Second, the CDA model asserts that
the introduction of each new option results in the addition of a
non-negative value to every available option in the choice set, and
therefore, as the number of options in a given choice set increases
the value of every option in that set increases. This implies that the
value of an option not only depends on other options in a given
choice set but also on the size of that set.

In order to illustrate the effect of the set size on the valuation in
the CDA model, we computed the value of an option at different
locations of the attribute space as a function of the number of
equally preferable options in the choice set. We found that option
value increases linearly with the number of options in the choice
set, in every location of the attribute space (Figure 6A). This is a
direct consequence of the fact that in the CDA model, the relative
advantage always adds a non-negative value to the overall value of
a given option. Therefore, the same option has a larger value when
it is part of a larger choice set (Figure 6B); in addition, the overall
value of the options in the choice set exponentially increases with
the choice set size (Figure 6C). The former suggests that the
difference between the values of two options in a given choice set
should grow as the set size increases, resulting in better value
discrimination in a larger choice set.

The underlying mechanisms for context effects, which rely of
pairwise comparison between all options in the choice set, imply
that required resources for computations of context effects should
increase supra-linearly with the choice set size. To demonstrate
this point, we used the network structure in the LCA model [24] to
calculate the required computational resource in the CDA model
or any of its equivalent neural models (see Methods for more
details). We found that computational resources also increase
exponentially with the choice set size (Figure 6D).

Finally, we explored the influence of the set size on the valuation
in the RN model by computing changes in valuation due to decoy
introduction for different number of options in the choice set
(Figure 6E). We found that choice set size does not have a
significant effect on valuation, and the overall value of the decoy
does not change with the choice set size (Figure 6F). Moreover, the
overall value of options in the choice set as well as the required
computational resources increase only linearly with the choice set
size (Figures 6G and 6H). These happen in our model because the
computations required for context effect do not require compar-
ison and only depend on the configuration of option values in
individual dimensions. Therefore, in contrast to the CDA model,
the RN model does not predict an increase in the option values as
the choice set size increases. These contrasting predictions of the
model can be tested in future experiments.

Table 1 summarizes the overall decoy effects predicted by the
CDA and RN models, and the actual effect sizes for different
decoy types. Most effects are in the predicted direction and are
significant. Note that the RN model correctly predicts both the
influence of distance on the decoy effects and the anti-correlation
between the effects for attraction and asymmetrically dominant
decoys.

Discussion

The prevalent influence of context on decision-making has long
been considered an ‘‘anomaly’’ against the normative account of
human choice behavior [35,36]. The reason is that normative
theories of choice typically assume that values are computed
independently for each stimulus, rather than comparatively. The
guiding metaphor for these normative theories of valuation and
choice is a naı̈ve theory of perception in which separate valued
objects are perceived as encapsulated units and then integrated by
a decision architecture. Of course, this view tends to disregard
decades of evidence about how the visual system uses top-down
encoding, neural adaptation and normalization, and gestalt
principles in integrating multiple percepts.

In this spirit, we propose that context effects are a natural
consequence of the biophysical limits of the neural processing in
the brain, as shown for other aspects of perception and choice [37–
39]. We construct a model for context effects based on plausible
biophysical mechanisms that enable neurons to efficiently adjust
their responses to the set of available stimuli. Both the effects of
context on neural representation and the normalization to the set
of stimuli have been extensively documented in auditory [40,41]
and visual domain [42–44], where neurons are required to
represent and encode external stimuli presented in very different
backgrounds. Moreover, adaptation is an efficient way for the
nervous system to adjust to variable statistics of the environment to
improve its local information capacity or discriminability power
[45–50].

In our model, we explored one possible class of neural
adjustments (range normalization) during valuation and choice
using two main assumptions. First, neurons utilize their entire
biophysical dynamic range to represent a set of stimuli. However,
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it is possible that neurons never reach to their maximum
biophysical firing rates and instead fire at medium rates under
many conditions (i.e. stimulus set). This only implies that the upper
representation factor, fs, should be positive (see Eq.5) and does not

qualitatively change the behavior of our model. Similarly, neurons
not representing any stimulus with zero firing rate only implies
positive values for the lower representation factor, ft. Second, we
assume that range normalization only depends on configuration of

Figure 6. Dependence of the context effects on the size of the choice set in the CDA and RN models. Conventions are the same as in
Figure 3 (A–D) Predictions of the CDA model. The overall value of an option in different locations of the attribute space is plotted for different choice
set size: (from left to right) zero or in the absence of context effects, two, four, and eight options. The option value monotonically increases with the
set size for any locations of the attribute space. (B) The average decoy value (over the attribute space) as a function of the choice set size in the
presence and absence of the context effects. For each point we average the decoy value over all locations of the attribute space in panel B. (C) The
average of the sum of option values in the choice set as a function of the choice set size. Conventions are the same as in B. The total options values
exponentially increases with the choice set size. (D) Required computational resources for the network counterpart of the CDA model. Conventions
are the same as in B. The computational resources required for context effects also exponentially grow with the choice set size. (E–H) Predictions of
the RN model. In the RN model, the range of possible values of an option does not depend on the choice set size. (F) The average decoy value as a
function of the choice set size. Conventions are the same as in B. The average decoy value does not depend on the choice set size. (G) The average of
the sum of option values in the choice set as a function of the choice set size. The overall value of options in the choice set only increases linearly with
the choice set size. Note the difference in scale in G and C. (H) Required computational resources for the RN model. In contrast to the CDA model,
computational resources required by the RN model only increases linearly with the choice set size.
doi:10.1371/journal.pcbi.1002607.g006
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the stimulus set and not the number of stimuli. Incorporating other
parameters into response-normalization mechanisms does not
contradict our proposal but it may change the resulting context
effects. Here we only consider one form of range normalization to
explain some of the basic effects of context on the choice
preference. Future works would explore the consequences of other
types of neural adjustments on the context-dependent choice
behavior (see below).

Interestingly, response normalization is not unique to sensory
neurons and processing, rather it seems to be a general property of
cortical computations [51,52]. A recent electrophysiological study
in primates has demonstrated that some neurons in the
orbitofrontal cortex (OFC) adapt their representation of the
economic values to the range of values during a given session [51].
To account for this observation, Padoa-Schioppa has proposed a
‘‘range adaptation model’’ in which the neurons adapt their
representation (by changing their sensitivity) to the range of values,
while their activity does not increase with the value range. In fact,
in some circumstances OFC neurons appear to encode the value
of the available options in a reference-dependent fashion by
representing the relative value of each option in the set [53] while
in other circumstance show invariance for changes of the menu
[54]. Our proposed range-normalization model is more general
than the range-adaptation model and differs from this model in
terms of the timescale on which adaptation or normalization takes
place. That is, only in a special case where the representation
factors are equal is the ratio of difference in response to original
options after the decoy introduction to before the decoy
introduction inversely proportional to the ratio of the range of
values after to before decoy introduction (see Text S1). However,
in the RN model, adjustment happens on every trial with three
options. In contrast, in the range-adaptation model, the range of
values on a given session controls the adaptation. It is highly
possible that we would also observe such adaptation on a larger
timescale (e.g. a session) if the option set changed between sessions.

Another recent study has shown that neurons in the lateral
intraparietal cortex (LIP) show context-dependent effects by
encoding the values of the saccade in the response field relative
to the value of all other alternative saccade movements [52]. The
authors used a divisive normalization model to account for their
experimental findings. More specifically, the response to the value
of the saccade in the receptive field is divided by the weighted

response of the saccadic values of all options presented in the
choice set, similarly to what has been proposed for sensory neurons
[55,56]. Therefore, due to divisive normalization, the value of
each given option is globally scaled by the value of all the
alternative options. In contrast, in our range-normalization model,
the representation of each attribute dimension depends on the set
of presented values, and not their sum (Figure 5B). Divisive
normalization can account for relative value coding but does not
predict any type of attraction effect because decoy introduction
always suppresses the response to the target and the competitors
without any change in the ranking of the options. However, it is
possible that our proposed range normalization and the divisive
normalization mechanisms play roles during different stages of
decision process. Range normalization operates at the early stage
of the decision process when cortical neurons have to represent
individual features of each option; while divisive normalization
operates at final stages (e.g. in LIP) when overall value associated
with different actions need to be represented to control the
selection processes (e.g. saccades).

A number of psychological models have used the attribute
comparison as the basic mechanism to account for attraction and
other decoy effects. The CDA model presented here was chosen as
an example of such models because it accounts for the attraction
and asymmetrically dominant decoy effects and provides testable
predictions due to its simple, yet clear mathematical formulation.
However, the CDA model or any other model that relies on
attribute comparison, suffers from a few important issues. Firstly,
such models predict that the values of all options increase (or at
least the best and worst option) as the choice set increases, which
implies that when presented as part of larger choice set options can
be differentiated easier than when they are presented in a smaller
set. This prediction is in contrast with experimental evidence
showing that discriminability between items decreases with the
increase of the data set [57], and that neural representation of
option values decrease as the number of alternatives increase [52].
Secondly, in such models, resources required for computation of
context effects exponentially increases with the choice set. The
CDA model also predicts that decoy effects are larger for closer
decoys. This is somehow counterintuitive as it predicts maximal
decoy effects for very similar but dominated decoys - while these
decoys should have little or no effect on the preference for the close
dominant option, as it might be hardly distinguishable.

Table 1. Predicted properties of the CDA and RN models, and associated empirical evidence.

Property Effect magnitude CDA prediction RN prediction

Effects of decoy types on choice of nearby option (decoy efficacy)

1 Asymmetrically dominant: D1, D4, overall 20.06*, 20.09*, 20.05* 2 2

2 Asymmetrically dominated: D3, D6, overall 0.11*, 0.05*, 0.07* + +

3 Similarity: D2, D5, overall 20.03, 20.08*, 0.03 0 0{

4 Difference in magnitude of decoy efficacy
of far and close decoys: D1, D4, D3, D6

0.20*, 20.01, 0.26*, 0.20* 2 +

5 Correlation of effects in rows 1 and 2 r = 20.57, p,0.008 2 2

New predictions

6 Computational demands as a function of the choice set size n/a Convex Linear

7 Choice value as a function of the choice set size n/a Exponential increase Invariant

Note:
*Denotes significant at p,0.05.
{The RN model shows weak similarity effects but this is ignored here for simplicity. Data for rows 1–3 is from Figures 1D and 2B; row 4 is from Figure 2A; and row 5 is
from Figure 2C. Results in row 6 and 7 are shown in Figure 6.
doi:10.1371/journal.pcbi.1002607.t001
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Recently, more sophisticated connectionist models have been
proposed to capture attraction and other context effects such as
the compromise and similarity effects. Two of such connectionist
models are the decision-field theory (DFT) [26] and leaky
competing accumulator (LCA) models [24]. While in both models
attention determines which attribute to be compared at the time,
these models rely on different mechanisms to account for attraction
effect. The DFT model relies on bi-directional distant-dependent
inhibition while the LCA model depends on the loss aversion.
However, because both the DFT and LCA models require attribute
comparison at some stages of processing (similar to the CDA model),
they both suffer from the combinatorial problem as the CDA model.
In contrast, our model that relies on range normalization of neural
responses, which is adjusted only once regardless of the number of
options, does not suffer from this issue.

There are other psychological models of context effects that do
not rely on attribute comparison as the basic mechanism. Most of
these models are based on heuristics and are not mathematically
well formulated. These include but are not limited to the so-called
weight-change, value-shift, and value-added models [21]. The
weight-shift model assumes that adding a new alternative changes
the relative weights of different attributes; it reduces the weight of a
given attribute if the range on that attribute is extended and
increases the weight if the number of different attribute values is
increased. The value-shift model on the other hand, assumes that
decoy changes the subjective evaluation of the attribute values,
mainly based on the relative position of decoy with respect to the
rest of options (as in range-frequency theory [58]). Finally the value-
added model assumes that decoy introduction adds values to
original options, which depend on the relational properties of the
decoy and each target. Our range-normalization model shares some
similarities with the value-shift model in a sense that it assumes that
the decoy value on a given attribute changes the value represen-
tation in that attribute independently of the other attributes.
However, for a limited case where representation factors are equal,
the effective weight of a given dimension is inversely proportional to
the range of values on that dimension (but there is no explicit
relationship to the frequency effects in weight-shift model). Despite
this similarity, our model relies on very different assumptions to
explain the decoy effects and generates a number of novel
predictions, while it is difficult to generalize the previous models
because of their lack of mathematical formalization.

Still another set of models, from economics and marketing [59–
61], assume that consumers are not sure what they prefer, but
those consumers infer reasonable preferences from what options
are available (as if mere option availability is advice). Decoys have
an influence because they shape the consumer’s idea of what might
be a good choice. Comparison of these models with the CDA, RN
and others is an interesting area for future research.

Context is a powerful modulator of how underlying prefer-
ences are constructed and choices are made, as documented by
many behavioral experiments and field studies [35,62]. At the
theoretical level, however, most of the attempts to account for
context effects have neglected the computational constraints
faced by the brain in order to compare choice options
characterized by several different attributes. In this paper we
show that considering plausible biophysical constraints of the
nervous system can indeed account for a few important aspects
of context effects. The range-normalization model we proposed
here has a reduced computational cost relative to competing
models and at the same time produces accurate empirical
predictions. More importantly, it enables us to connect plausible
biophysical constraints of neural representation to the biases in
the human choice behavior.

Methods

Ethics statement
All participants gave informed consent to participate according

to a protocol approved by the California Institute of Technology
Institutional Review Board.

Experimental paradigm and subjects
The experiment consisted of two parts in which subjects selected

between different monetary gambles. In the first part (estimation
task), the subject selected between two gambles with different
reward probabilities and magnitudes. We used subject’s choice in
this task to estimate his/her attitude toward risk and to tailor
equally preferred target (T) and competitor (C) gambles. In the
second part of the experiment (decoy task), we assessed the
preference between the target and competitor gambles in the
presence of a third gamble. The subjects were told to consider
every trial as equally important because at the end of the
experiment, only one trial would be randomly extracted and the
selected gamble on that trial would be played for real. To further
encourage subjects to pay attention to every trial, we deducted $1
from the final compensation for each missed response.

In total, 22 healthy Caltech male students (2264 years old) took
part in the study. One subject was excluded from the data analysis
since he showed an erratic pattern of gamble selection during the
estimation task. This was reflected in a poor fit of his choice
behavior - his sensitivity to reward magnitude, 1=sM , was 7 times
smaller than the mean of the group (see Figure S2 in Text S1 for
the distribution) - which prevented a reliable estimation of his
indifference point.

Estimation task
In the estimation task, we assessed individual subjects’ risk

attitude using selection between two monetary gambles. The
assessment procedure was an adaptation of the widely used
method for estimating the indifference point which was originally
developed by Holt and Laury [63]. Every subject completed four
equivalent sessions, each of which consisted of 40 trials. On each
trial, the subject had 4 seconds to evaluate two gambles while the
instruction message ‘‘Evaluate’’ was on the screen. After this
interval, the instruction message was changed to ‘‘Choose’’ and
the subject had 2 seconds to indicate their choice using a
keyboard. Each gamble was defined by two parameters (p, M),
probability p of winning a monetary reward of magnitude M, that
were presented on the screen with different colors. One gamble
was characterized by a small reward magnitude but a large reward
probability (low-risk or the target gamble). The other gamble had a
large reward magnitude but a small reward probability (high-risk
or the competitor gamble). We fixed the magnitude and probability
of the low-risk gamble (p = 0.7, M = $2062) while we varied the
magnitude of the high-risk gamble between $30 and $80 (p = 0.3,
M = $30–$80).

Decoy task
In the second part of the experiment, we tested how presence of

different decoy gambles influences the preference between the low-
risk and high-risk gambles. The low-risk gamble (T) was set to have
a magnitude M of $2062 and a probability p of 0.760.05. The
high-risk gamble (C) was set to have a probability p = 0.360.05
while its magnitude was tailored individually using the indifference
point from the estimation task, in order to have the subjects
indifferent between T and C. Finally, decoy gambles (D) were
designed to have a wide range of magnitude and probability values
(Figure 1). Specifically, we varied probability values of the decoy
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between 0.15 and 0.85, while we varied its reward magnitudes by
30% of the reward magnitude of the gamble closest to the decoy.

The task sequence was as follows. Three gambles (T, C and D)
were presented on the screen for 8 seconds (evaluation period)
while the ‘‘Evaluate’’ message was on the screen. The subjects
were told to evaluate the three gambles during this period. Once
the evaluation time was over, the message ‘‘Evaluate’’ was
changed to ‘‘Choose’’ and simultaneously, one of the three gambles
was randomly removed from the screen. The subjects then had
2 seconds to choose between the two remaining gambles by pressing
a keypad (selection period). The decoy task was conducted in the
MRI scanner (Siemens Trio); however, the fMRI data are neither
analyzed nor presented here as they are beyond the scope of this
paper. The main reason for not including the fMRI data here was
that none of the models presented in this paper generates
predictions that could be tested using BOLD-level signals.

On one third of the trials (catch trials), either C or T gambles
disappeared. These trials were included to avoid the subject from
predicting which gamble would disappear after the evaluation
period, and were subsequently excluded from the analysis. On the
remaining two thirds of the trials (regular trials), the decoy gamble
disappeared allowing us to study how the presence of this option in
the choice set influence the preference between C and T. Using this
design (i.e. phantom decoy design), we were able to examine the
effects of decoys that were preferred over C or T gambles. Finally,
we used a short choice period (2 seconds) to avoid subjects from
reevaluating the two remaining gambles. In fact, the only way to
perform this task efficiently was to rank the 3 gambles during the
evaluation period and to use this ranking at the choice period.
Debriefing after the study confirmed that a large majority of the
subjects used this ‘‘ranking strategy’’ which was also reflected in the
dependence of the RT on the decoy (Figure S7 in Text S1).

Range-normalization model
The range-normalization model consists of three layers of

neural populations: the attribute-selective, option-selective, and
decision-making populations. The attribute-selective layer consists
of two neural populations that represent the two attributes of the
options. The attribute-selective populations project to the option-
selective layer that consists of neural populations each of which
represents the subjective value of an option in the choice set. The
subjective values of options are determined by the weight of
connections from the attribute-selective layer to the option-
selective layer (Eq.3). Finally, the outputs of option-selective
populations project the corresponding populations in the decision-
making layer. The decision-making network is similar to what has
been previously used to simulate different reward-dependent
choice behaviors [37,64].

Here we were only interested in the outcome of decision-making
processes, therefore, we did not simulate the decision-making
network on every trial. Instead, we used a sigmoid function, which
has shown to describe the choice behavior of the decision-making
network very well [37,64], in order to compute the choice
probability for a given set of inputs to the decision network. More
specifically, the probability of selecting T, p(T), is equal to

p(T)~
1

1zexp {
wv(RT{RC)

s

" # ð10Þ

where RT and RC are the responses of option-selective populations
for target and competitor (Eq.3), wv is the strength of connections
from option-selective to decision-making populations, and s is a

model parameters which is determined by the architecture of the
decision-making network and the overall strength of its inputs
[37,64].

In order to obtain the neural response of attribute-selective
populations to a given stimulus set, we used Eq.6 to calculate the
threshold and saturation points. The threshold and saturation
points uniquely define the neural response through Eq.4. To
calculate the neural response after the decoy introduction, we first
identified the minimum and maximum, and next to minimum and
maximum stimuli in the stimulus set, and then we used Eq.6 to
compute the threshold and saturation points.

For simulations presented in Figure 4C, we used Eq.7 to
calculate partially adjusted threshold and saturation points. For
simulations presented in Figure 4D, an additional constraint for
the slope of neural response was imposed as follows. For a given
decoy location, we calculated the threshold and saturation points
from which the slope could be determined. If the slope was below
the minimum value (0.015 in simulations presented in this paper),
in a stepwise fashion we increased and decreased the values of
threshold and saturations points, respectively, until the slope value
became larger than the minimum slope value. In order to simulate
decoy effects in the two-dimensional attribute space, the same
procedure was applied on each attribute dimension independently.
For simulations presented in Figure 5D and Figure 5E, the
representation factors are selected from any combinations of
ft~f{0:2,{0:1,0,0:1,0:2gand fs~f{0:2,{0:1,0,0:1,0:2g for
each attribute dimension.

Finally, to calculate the required computational resource in our
model, we assumed that an addition of each option to the choice set
requires the engagement of one neural population to represent the
subjective value of the new option, which requires an additional
option-selective population. In contrast, in the network implanta-
tion of the CDA model, such as the LCA model, an addition of each
option requires the engagement of a few neural populations that are
required for comparison between each attribute of the new option
and the existing options. As a result, required computational
resources in CDA model increases with the number of options in the
choice set, N , as N(N{1). All simulations were performed using
custom-made codes in MATLAB.

Data analysis
For the statistical tests presented in the paper, we have provided

the conventional significant values in addition to the applied test.
In order to quantify the decoy effects, we used the overall
preference for the target gamble and the preference for the target
gamble for a given decoy to define the decoy efficacy, e(Di)

e(Di)~
pT (Di){pT

pT (Di)zpT

Based on this definition, the decoy efficacy is bound between 21
and 1. Note that using preference for C to define the decoy
efficacy gives similar results to what presented here.

Supporting Information

Text S1 A PDF file containing additional analysis of the CDA
and RN models, and the supplementary figures.
(PDF)
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